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1 Abstract

Litigation finance, which originated in Australia and later expanded to the United States,
has evolved into a critical tool for both plaintiffs and defendants in modern legal practice.
Initially gaining prominence during the aftermath of the Global Financial Crisis, litigation
finance emerged as a strategic response to mitigate credit risk and diversify litigation portfo-
lios. By providing capital to cover the often substantial costs of legal proceedings, third-party
financiers enable litigants to pursue claims they might otherwise forgo due to financial con-
straints. This financing mechanism has become an essential asset for law firms, offering both
a means of protecting clients’ financial interests and a way to manage risk in high-stakes
litigation. As litigation finance continues to grow globally, particularly in commercial dis-
putes, class actions, and mass torts, its regulatory and ethical implications have garnered
increasing attention. This paper discusses the subset of Third Party Litigation Financing
and it’s potential development into a tradable derivative.

Third-Party Litigation Finance (TPLF) refers to a specific form of litigation funding
where an external, non-litigant investor provides capital to a party involved in a legal dis-
pute, typically covering the costs of litigation such as legal fees, expert witnesses, and court
expenses, in exchange for a portion of any financial recovery from the case’s outcome. Unlike
general litigation finance, which may also include funding for operational purposes or pre-
litigation costs, TPLF is primarily concerned with supporting ongoing litigation in exchange
for a contingent financial return.

This study aims to create a standardized contract and pricing mechanism for said con-
tract. The pricing will be done through a neural network trained on a novel database
assembled from scratch through a combination of manual data entry and scraping PDFs off
the web and parsing through them using an NLP. The contract will assume the amount in-
vested by the third party as a % of the litigation expenses will correlate 1:1 with the amount
received from the law firm’s share of the winnings. This would mean a 1% investment into
the litigation expenses would payout 1% from the law firm’s share of the winnings when all
is said and done.

This is a long term project for us, and we plan on keeping you in the loop!

2 Introduction

The growing field of third-party litigation finance (TPLF), particularly in the context
of class action lawsuits, is transforming the landscape of legal funding. Over the past two
decades, third-party investors have increasingly become integral participants in financing
lawsuits, offering capital to plaintiffs in exchange for a portion of any settlement or judgment.

1



This shift has democratized access to justice, particularly for parties with limited financial
resources, and has created new opportunities for investors seeking alternative assets. One
area that remains underexplored and difficult to navigate, however, is the pricing of third-
party litigation finance products tied to class action cases, a segment of the market known
for its complexity, uncertainty, and high financial stakes.

Class action lawsuits, which involve a large group of claimants collectively pursuing legal
action against a common defendant, have become a critical tool for plaintiffs facing systemic
legal issues. These lawsuits typically involve significant legal resources and expertise, as
they deal with complex claims often spanning multiple jurisdictions and raising questions of
broader social and economic importance. The financial risks for plaintiffs in these cases can
be prohibitive, which is where third-party litigation finance comes in. By offering financial
support for legal expenses in exchange for a percentage of any recovery, third-party funders
enable plaintiffs to pursue their claims without bearing the full cost burden. This model
has proven particularly effective in jurisdictions like the United States, the United Kingdom,
and Australia, where litigation costs can be prohibitively high, and access to justice is often
limited to those with substantial financial resources.

Despite the increasing role of third-party litigation finance, there is a notable lack of
sophisticated tools for accurately pricing third-party litigation finance products related to
class action lawsuits. In the absence of reliable models, investors and legal practitioners
often resort to subjective assessments or heuristics based on prior experience, making pricing
inconsistent and prone to error. This is particularly problematic given the need for precise
valuations to determine the appropriate investment and risk-sharing arrangements between
funders and plaintiffs. To address this gap, it is crucial to develop a more systematic, data-
driven approach to the pricing of these financial products.

2.a Context and Motivation

The role of third-party litigation finance has grown exponentially in recent years, driven
by increasing demands for capital in large-scale legal disputes and by the opportunities for
high returns that these cases offer. In jurisdictions such as the United States, the UK, and
Australia, third-party funders have entered the legal market, offering funding to plaintiffs in
exchange for a share of the eventual award or settlement. These arrangements have not only
made litigation more accessible but have also facilitated the resolution of many cases that
otherwise might not have been pursued. The funding model enables plaintiffs to proceed
with complex class action lawsuits, which typically require significant upfront legal costs,
without the financial burden of personal investment.

Investors, too, have benefited from the emergence of third-party litigation finance, as
these investments offer opportunities for potentially high returns that are uncorrelated with
traditional financial markets. For investors, class action lawsuits present a high-risk, high-
reward opportunity, where the value of their investment depends heavily on the success of the
lawsuit. However, the complexity and uncertainty of these cases make it difficult to estimate
the potential return accurately. This inherent uncertainty poses a significant challenge, as
funders need to evaluate the likelihood of success, case duration, potential settlement value,
and many other factors before committing substantial capital to these lawsuits.

Despite the benefits of third-party litigation finance, the pricing models available today
are rudimentary and fail to incorporate the full range of factors that determine the success or
failure of a case. Class action lawsuits, in particular, present unique challenges due to their
complexity, large scale, and the involvement of numerous stakeholders. Each case involves
a unique set of facts, jurisdictions, and legal precedents, all of which must be taken into
account when determining the price of a financial product tied to the lawsuit’s outcome.
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The challenge lies in how to accurately assess the potential returns in the face of such
uncertainty, where the variables involved are often qualitative and difficult to quantify.

There is a pressing need to develop a comprehensive pricing model that can provide
reliable predictions of the potential value of third-party litigation finance products related
to class action lawsuits. Such a model would not only improve transparency in the market
but would also help to streamline decision-making for both investors and plaintiffs. By
incorporating a wide array of strong signals, such as jurisdiction, case complexity, legal
precedents, and historical case data, this model would provide more accurate, data-driven
estimates of case outcomes, enabling investors to make better-informed decisions.

2.b Research Gap

One of the primary challenges in the field of third-party litigation finance, particularly with
respect to class action lawsuits, is the difficulty in accurately pricing these financial products.
Third-party litigation finance products share characteristics with call derivatives, where
the value of the investment is contingent on the success of the underlying litigation. Much
like a call option in traditional finance, the investor’s payoff in third-party litigation finance
is asymmetric—highly leveraged in the event of a successful case, but yielding little to no
return if the case fails. This option-like structure, however, complicates pricing, as the
value depends not only on the eventual outcome of the lawsuit (success or failure) but
also on a range of other factors, such as case duration, jurisdictional nuances, the legal
team’s expertise, and the defendant’s financial health. These elements introduce significant
uncertainty, making third-party litigation finance products inherently complex and more
difficult to model than conventional financial assets.

The challenge of pricing becomes particularly pronounced when dealing with class action
lawsuits, where the number of plaintiffs, the scope of claims, and the sheer complexity of legal
arguments further complicate the pricing process. Investors must navigate the uncertainty
of multiple claimants, each with varying levels of involvement, and assess how factors such
as judicial temperament, case strategy, and the likelihood of settlement impact the final
outcome. These factors are often qualitative in nature, difficult to capture in structured
data formats, and highly jurisdiction-dependent. Moreover, litigation risks are not fixed
and can evolve throughout the course of the case, with unexpected rulings or new evidence
potentially shifting the trajectory of the lawsuit.

Another significant gap in the literature is the lack of established frameworks for extract-
ing and identifying meaningful features from unstructured legal data. Legal documents, such
as court rulings, case filings, and expert testimonies, are typically dense with information
that is not readily quantifiable or structured for machine learning algorithms. This makes it
challenging to identify which variables most strongly influence the outcome of a class action
lawsuit, and how these variables should be incorporated into a pricing model. Legal language
is often imprecise, and the context in which a case is tried—such as jurisdictional norms, the
experience of the legal team, or political considerations—can add layers of complexity that
are difficult to standardize.

While machine learning and Natural Language Processing (NLP) hold significant promise
for automating feature extraction from legal texts, there remains a lack of comprehensive
models that can fully capture the nuances of legal language and interpret complex case details
in a way that is useful for pricing third-party litigation finance products. Many existing
models in the litigation finance space rely on simple heuristics or historical case data, but
these methods fail to account for the evolving and dynamic nature of legal disputes. As a
result, the pricing models available today are often inaccurate, inconsistent, and unable to
account for the full spectrum of risk involved in third-party litigation finance.
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In summary, the research gap in third-party litigation finance lies not only in the complex-
ity of pricing models that can handle option-like characteristics (similar to call deriva-
tives) but also in the lack of standardized features to process and analyze unstructured
legal data. The absence of reliable features for class action lawsuits, combined with the
dynamic, evolving nature of legal proceedings, presents a significant challenge to creating
accurate pricing models. This gap highlights the need for new methodologies, particularly
leveraging machine learning and NLP, to extract meaningful, actionable data from legal
texts and integrate these insights into robust predictive models.

2.c Contributions

This paper aims to make several key contributions to the field of third-party litigation finance,
focusing specifically on the pricing of class action lawsuits:

1. Development of a Comprehensive Pricing Model: This research introduces a
data-driven pricing model for third-party litigation finance products associated
with class action lawsuits, incorporating a broad range of strong signals, such as
jurisdiction, case complexity, legal precedents, and other key factors. These signals are
integrated into a predictive framework that allows for a more objective and scalable
assessment of class action cases.

2. Utilization of Natural Language Processing (NLP): One of the novel aspects
of this paper is the application of NLP techniques to extract relevant features from
unstructured legal text. By analyzing case filings, judicial opinions, and other legal
documents, this model captures critical insights that inform the likelihood of success,
potential settlement amounts, and case trends, which are essential for accurate pricing.

3. Machine Learning Model for Predicting Third-Party Litigation Finance
Prices: Leveraging a neural network-based machine learning model, this paper
develops a tool capable of predicting the price of third-party litigation finance products
tied to class actions. By training the model on historical case data and strong signals
identified through NLP, the tool generates more accurate forecasts of case outcomes
and funding requirements.

4. Retraining and Model Adaptation: To account for the evolving nature of litigation
and the dynamic risks associated with class action lawsuits, the model is designed to be
retrainable. This ensures that the model can adapt to changing legal environments,
market conditions, and new data, improving its accuracy over time and allowing it to
remain relevant for future cases.

5. Tradable Securities: Finally, this paper explores the potential for transforming
predicted prices into tradable securities, opening up opportunities for investors
to engage with third-party litigation finance products in a manner akin to financial
markets. By using predicted case prices as the foundation for tradable instruments, the
model supports the creation of a liquid secondary market for third-party litigation
finance, providing greater flexibility and transparency for investors.

By addressing these gaps and providing a more structured, data-driven approach to
pricing, this paper lays the groundwork for more accurate, efficient, and scalable models in
the third-party litigation finance industry. In doing so, it has the potential to reshape the
landscape of litigation funding, enabling more informed decision-making, improved risk
management, and broader access to capital for plaintiffs pursuing class action lawsuits.
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3 Literature Review and Background

In this section, we review the existing literature on third-party litigation finance (TPLF), the
methods used to price litigation finance products, and the role of machine learning models in
financial forecasting. Additionally, we explore the specific application of neural networks in
this field and the key innovations introduced by our proposed model. This review aims to set
the stage for understanding the challenges in pricing class action lawsuits, while positioning
machine learning and neural networks as a powerful solution to these challenges.

3.a Existing Methods

Third-party litigation finance is a relatively new industry, and as such, the literature on it
is still evolving. While TPLF has gained prominence in legal markets, especially in jurisdic-
tions like the United States, the United Kingdom, and Australia, comprehensive models for
predicting the financial viability of these investments are sparse. Most existing approaches
for pricing TPLF products are rudimentary and heavily reliant on qualitative judgment,
historical case analysis, and basic financial models.

Historically, pricing litigation finance products, especially in the context of class action
lawsuits, has been based on heuristics and expert opinion. Investors rely on experienced pro-
fessionals who make subjective assessments of the likelihood of case success, the potential for
settlement, and the possible duration of litigation. These qualitative evaluations often focus
on factors such as the reputation of the legal team, the complexity of the case, the presence
of strong precedents, and the defendant’s financial condition. However, these methods lack
precision and cannot fully account for the large number of variables involved in class action
cases, such as evolving legal arguments, procedural delays, or changing political or economic
factors that may influence the case outcome.

The application of probabilistic models and Monte Carlo simulations has also been ex-
plored in literature. These methods aim to account for the various uncertainties in class
action cases by simulating numerous possible outcomes based on a variety of assumptions.
Monte Carlo simulations can generate a range of probable outcomes, thus providing a distri-
bution of values that investors can use to assess potential returns. While these models are
more sophisticated than basic heuristics, they still face significant challenges when it comes
to dealing with the complexity of unstructured legal data. In particular, extracting the right
features from legal documents to inform the simulations remains a significant barrier.

Furthermore, legal analytics platforms have emerged in recent years, using historical
data to generate insights into the likelihood of success in litigation. These platforms rely
heavily on statistical analysis and regression models to find correlations between historical
case outcomes and various factors, such as the type of case, jurisdiction, and the experience
of the legal team. While these tools can provide useful benchmarks, they tend to rely on
aggregated data and are limited in their ability to account for the subtleties and nuances of
individual cases, especially in the context of class action lawsuits, where each case has its
own set of intricacies.

Despite these advancements, the field of third-party litigation finance pricing remains
underdeveloped, with existing methods often lacking the granularity, flexibility, and accuracy
required for effective decision-making. Moreover, most existing methods do not leverage the
full potential of modern computational techniques that can process large amounts of data,
such as natural language processing (NLP) and machine learning (ML). These shortcomings
create a significant opportunity for innovation, particularly through the application of more
advanced models like neural networks.
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3.b Why Neural Networks?

Neural networks, a subset of machine learning algorithms, have emerged as a powerful tool
in solving complex problems where traditional methods have limitations. The ability of
neural networks to automatically learn patterns from large and high-dimensional datasets
makes them especially suitable for applications in fields like finance, where data is often
unstructured and voluminous. Neural networks can be used to model non-linear relationships
and interactions between variables, making them ideal for predicting complex outcomes such
as those found in third-party litigation finance.

The case for using neural networks in TPLF pricing lies in their capacity to handle
both structured and unstructured data. Structured data in TPLF models may include
variables such as case type, jurisdiction, defendant’s financial status, and historical settlement
amounts. However, legal cases also produce vast amounts of unstructured data, such as text
in legal filings, judicial opinions, and news reports. Extracting meaningful insights from these
sources is a significant challenge, as traditional data analysis techniques are often inadequate
for understanding the subtleties of legal language. Neural networks, particularly those using
Natural Language Processing (NLP) techniques, are well-suited to this task, as they can
analyze large quantities of textual data to uncover hidden patterns that may not be obvious
to human analysts.

The versatility of neural networks also makes them well-suited to the dynamic nature
of litigation. Unlike static models, which assume that the relationships between input vari-
ables remain constant, neural networks can adapt over time as they learn from new data.
This ability to retrain the model continuously ensures that it remains relevant in an ever-
changing legal and financial environment. As new court rulings are issued, new cases are
filed, and emerging legal precedents come into play, a neural network-based model can adjust
its predictions to account for these changes, making it far more adaptable than traditional
models.

One key advantage of using neural networks for TPLF pricing is their ability to capture
complex, non-linear relationships. In traditional financial models, many assumptions are
made about the linearity of relationships between variables. However, in litigation finance,
the interplay between various factors such as jurisdiction, legal strategy, case complexity,
and the potential for settlement is highly non-linear. Neural networks, by design, excel at
modeling such non-linearities, enabling them to better reflect the real-world dynamics of
class action lawsuits. This is particularly important for class actions, where a combination
of factors—including the scale of the case, the number of plaintiffs, and the likelihood of legal
precedents—can influence the outcome in ways that are difficult to predict using conventional
models.

Another critical advantage is the ability of neural networks to handle large datasets.
Class action lawsuits often involve extensive documentation, including pleadings, motions,
depositions, and court rulings. These documents contain a wealth of information that can
provide insight into the likely outcome of a case, but processing them manually is time-
consuming and prone to error. Neural networks, with their capacity for automated feature
extraction from legal texts, can analyze this data more efficiently, allowing for the integration
of more diverse and detailed inputs into the pricing model.

Given these advantages, the use of neural networks presents an exciting opportunity to
improve the accuracy and scalability of litigation finance pricing models. By incorporating
a wider range of data and adjusting to evolving case dynamics, neural networks can provide
investors and legal teams with more accurate and actionable predictions. The ability to
process both structured and unstructured data, adapt to new information, and capture non-
linear relationships makes neural networks a natural fit for the complexities inherent in
third-party litigation finance.
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3.c Key Innovations

This paper introduces several key innovations that aim to address the current limitations in
pricing third-party litigation finance, particularly in the context of class action lawsuits. The
first innovation lies in the development of a hybrid pricing model that incorporates both
structured and unstructured data. Traditional pricing models in litigation finance often rely
solely on structured financial data and historical case outcomes. However, by integrating
unstructured data, such as legal filings, court opinions, and news reports, our model is able
to capture a broader range of signals that are highly relevant to predicting the outcome of
class action lawsuits.

A key aspect of this innovation is the application of Natural Language Processing
(NLP) to extract features from legal texts. NLP techniques enable the model to identify
patterns in legal language, such as trends in judicial decisions, the influence of certain legal
arguments, and the potential impact of case-specific factors like jurisdictional bias or recent
legal precedents. By incorporating these textual insights, the model provides a much richer
and more comprehensive picture of a case, leading to more accurate pricing predictions.

The second innovation is the use of a neural network-based machine learning model
to make predictions about the potential outcomes of class action lawsuits. By leveraging
deep learning techniques, the model can analyze vast amounts of historical data and identify
complex patterns that are difficult to detect with traditional methods. This allows the model
to generate more accurate predictions regarding the likely success or failure of a case, as well
as the potential settlement value.

Finally, this paper proposes the concept of retraining and model adaptation. As
litigation cases evolve and new data becomes available, the model can be retrained to improve
its predictions. This ensures that the model remains up-to-date and relevant, capturing
changes in legal trends, judicial behavior, and other factors that influence the outcome of
class action lawsuits.

By addressing these challenges, the innovations presented in this paper provide a power-
ful tool for investors, legal teams, and other stakeholders in the third-party litigation finance
market. The combination of neural networks, NLP, and retraining capabilities enables the
development of a more dynamic, scalable, and accurate pricing model for class action law-
suits, improving decision-making and risk management in this rapidly growing field.

4 Data and Methodology

4.a Pre-data

The first part to get our data is first finding signals. Public Access to Court Electronic
Records (PACER), the online federal court case locator, has a limit of 100 cases per quarter.
Luckily, classaction.org/database has many class actions to pick from, with filters on states
and the law the case was filed under, oftentimes coming with notes on who won. This allowed
us to find cases with a variety of jurisdictions and legal frameworks, allowing us to see if the
signal we thought we found was something that was common across all class actions or just
that specific one.

The following are the signals we chose and why we chose it.

• The jurisdiction/state: Certain courts have better expertise and have ruled in favor of a
particular party, for example when creditors filed a suit against a borrower in London,
they filed in the southern court as it shown favorability to creditors. Sometimes, a
judge or court could be driven through ideology or some other factor. Alternatively,
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the court might have rules/traditions on how many witnesses can testify. This could
bias the jury one way or another.

• The subject of the lawsuit (the underlying product or service) along with the proba-
bilities that it was a product or service based off of keywords in the suit. The subject
of the lawsuit is incredibly important, especially if it’s something that constantly gets
sued over. For example, bank fees and data breaches are a good chunk of class ac-
tions, and they win tidy sums for both the plaintiffs and law firms. A subject that has
repeated wins or losses is a great signal. The probabilities are important to give the
neural network a sense of how sure the NLP was in classifying the subject. A less sure
prediction might mean the case wasn’t well constructed and is more likely to lose.

• Probability classification if the subject is a core part of the company or an accessory
(for example, an Epipen is a core part of Mylan while marketing emails for Palantir
wouldn’t be): We think that some companies are more willing to settle early if the
subject is an accessory even if the money demanded is high and if it’s a core and the
money demanded is low. Early settlements could mean less money for the plaintiffs
but a higher IRR, while late settlements or going to court could mean losing money.
Some companies are completely the opposite: more willing to settle their main profit
generator early and drag out other suits for significantly longer. So this sort of thing
would be important when paired with who the defendant is.

• Average plaintiff costs: The amount of money lost by each plaintiff may affect the jury,
especially if there are punitive awards. Or if it’s something like a database breach due
to poor cybersecurity, it may end up with no money being awarded to the plaintiffs
but the law firm getting money. Regardless, this will affect the final winnings of the
case.

• Whether or not it’s a Delaware corporation: corporations that are located in Delaware
have certain protections. We believe this would reduce the expected payoff, especially
if the class action is in Delaware, as these protections could eliminate parts of the initial
filing as irrelevant.

• Table of Contents: Could be an indicator of the “professionalism” of the law firm. For
example, there are many small lawsuits (order of thousands or tens of thousands of
dollars) with a no-name law firm that are settled for almost nothing or are dismissed
in New York and are relatively unprofessional compared to the multimillion dollar
lawsuits that involve thousands or tens of thousands of people with a big name law
firm behind it.

• List of laws filed under: The law that the lawsuit was filed under is very important as it
changes the entire nature of the lawsuit. Different laws will have different probabilities
of winning, which will effect the expected payoff.

• Keywords: depending on what keywords are present there may be something important
to the neural net. This for us is something more experimental- we have no idea if this
will be of any importance to the neural net, but perhaps it finds some pattern.

• Magazines/Reviews: Things that show up in the media may bias the jury or be used
by the plaintiffs to show their cause is worthy. Typically, lawsuits with a lot of media
attention will also be led by big law firms ready to splurge in order to win, increasing
the expected payout.
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• Federal agencies: The US government being involved with the company before on a
similar issue could indicate a culture of rulebending or a lot of evidence the plaintiffs
can use to win, which we think can increase the expected value of the lawsuit.

Now that we had an idea of what we were looking for, we were able to have a game plan.
We would try to look for a database with at least a portion of what we were looking for,
especially the winnings, the amount the law firm made, and finally the expenses incurred by
the defense. The other pieces can be scraped from the lawsuit filings.

It was time to gather our pre-data. There is no rigorous centralized database that contains
all the data we need- in fact, nothing exists that contains most of the type of signals we were
looking for, and Wharton Research Data Services’ Federal Justice Center database had a
couple of the basic indicators we were looking for like jurisdiction, but out of the three
important indicators we were looking for it had none working correctly. To verify this later,
we cross referenced our list of downloaded suits to the database and found that all the cases
were showing as $0 or $230MM in winnings (and the vast majority were $0, which didn’t
line up with what we could tell). This also left us in the dark about the amount of money
the law firm made and the expenses incurred, so we ended up creating a webscraper to
download every pdf we could from classaction.org/database. A limitation here is that only
1,000 results show up across all the pages, so we had to build the scraper such that it would
iterate through every single state and law that was visible on the page (Exhibit 1). We were
lucky we did this early since building it took several hours, testing several more, and finally
running it took 30+ hours (due to all the waits in the code to let the webpages load).

4.b Data Gathering

Now it was signal extracting time. Giovanni built an initial NLP that we built off of to
extract most of our signals. This base file took in the pdfs, converted them to text files, and
compared them against a dictionary. Then it works finds the relevant words and phrases (for
example, ”New York Times” when checking for magazines). We mostly refined it by adding
more checks and changed file download directories, along with some other changes. We also
have a classifier started by him which uses BART Large MNLI for classifying the subject
between product and service. To find the jurisdiction and laws, we used the path that the
lawsuit was found in (so for example, if we found it on classaction.com/database under NC
> RICO > Sherman Antitrust Act, the state was North Carolina and the list of laws was
[RICO, Sherman Antitrust Act]

So we have the X part of our dataset, now we need the Y. Unfortunately this had to be
done manually. Luckily, consumer-action.org and topclassactions.com had a lot of cases that
we were able to cross reference with what we had downloaded. This meant going through
these two websites, finding the links to the class action notice websites and reviewing them
in order to find all the data necessary. We were then able to manually input the winnings
and the amount the law firm made (we ended up tabling the expenses for later because we
weren’t able to find enough data). Almost all were 1/3, .3, or .35 of the winnings, but a
couple we weren’t sure (so we put the industry standard of 1/3). Unfortunately because this
step took so long we don’t have a lot of data yet.

Exhibit 2 is a sample of our winning lawsuits.
From here it was fairly straightforward: combine our data (manual inputs, file location

data, classifications, and NLP results), transform any data we needed to (for example, dic-
tionaries of keyword frequencies would be turned into new columns), and encode any text
data. Then we got to building our neural network.
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4.c The Neural Network

Because our initial dataset was fairly small, we can’t have anything too grand. We built it
with Keras, with an input layer of 64 neurons and a ReLU activation function. Then we had
a dropout layer for regularization, followed by another layer with 32 neurons and another
ReLU, and finally an output layer. We used Adam as our optimizer with MSE as our loss
function, while having 50 epochs and a batch size of 4 to help with our small dataset.

Some things to keep in mind is that since we are planning on building this out going
forward, we still want to keep things like computational efficiency. So we used the ReLU,
which is computationally efficient and it avoids the vanishing gradient problem, and applies
to what we’re doing (some NLP). Similarly, we used Adam because of it’s computational
efficiency when it comes to sparse data, ability to work with nonconvex optimization prob-
lems, ability to do bias correction, and an adaptive learning rate which helps with a dataset
like ours. It works well for computer vision and with unstructured data (such as this one).

Funnily enough, the payoff of this contract we’re emulating is the same as a ReLU
function.

This is different from our presentation because we did more research regarding smaller
datasets and figured that we needed less neurons in our model.

5 Results

5.a Test Loss and MAE

We had a standardized test loss of .001711, surprisingly low, while our MAE was .036042.
This implies that our model performs significantly better when it works with standardized
features and a little bit of luck in regards to our test loss. In the future we will also do cross
validation in order to see the differences.

5.b Actual Results

Perry v. Progressive Henry V. Brown University

AmountWon 61,000,000 284,000,000

AmtWonPred 25,172,878 249,685,440

Diff0 35,827,122 34,314,560

Diff0%0 142 13

Diff0%1 58 12

FirmAmountWon 15,000,000 94,666,670

FirmAmtWonPred 17,919,924 72,757,600

Diff1 2,919,924 21,909,066

Diff1%0 19 23

Diff1%1 16 30

Note: Differences and percentages are absolute values.
The results here are promising but needs far more testing and data before being able to

say it’s rigorous.
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6 Discussion

6.a Important missing signals

We’re missing some pretty key signals that we hope to be able to include a later date. First
would be various date indicators (year filed, month filed, etc). This would be followed up
by number of named plaintiffs, the geographic spread of the plaintiffs, total damages, any
plaintiff deaths, along with several details that could be taken from the civil cover sheet and
many many more that couldn’t be easily done with NLP.

6.b Signal Analysis

We’d like to do marginal analysis as well, as in remove one signal and see how well the
model performs without that signal, and repeat. This will help us isolate important and
unimportant signals, or possibly even detrimental signals.

7 Conclusion

Despite not having a large dataset, we ended up being able to predict within the same order
of magnitude for our two test cases, which is not a terrible start to this long project. We
believe if we had stuck it out with the entire team we could have had more data for the
neural network, so team 1’s project would have been doable, but team 2 would have had a
difficult time creating the probability score for the model.

Our basic model is c = f ∗ E[Payoff] ∗ e−rt. f here is the fraction of the initial contract
cost c that the third party is willing to fund. r is the expected risk free rate, in this example
assumed to be 3% and t is the expected amount of time, which is about 2.5 years. So for our
two examples, a hedge fund could put in $16.6MM for Perry v. Progressive, or $67.5MM for
Henry v. Brown University. However, this not only drastically overshoots the initial amount
invested, but also doesn’t account for the inherent riskiness of lawsuits. This is where team
2’s analysis would have been helpful. The alternative here is that the risk-free return isn’t
important- instead the internal rate of return, or IRR, is. The IRR would fluctuate depending
on time but the idea would be that hedge funds can 10x their investment (assuming a 10%
investment to payoff ratio on wins) as their payoff would be correlated with the winnings.
This way, the basic model becomes c = f ∗E[Payoff], while the graph of the payoff becomes
the same as a call with a strike price of $0. This is because the payoff will be correlated with
the final winnings of the case, while losing nothing if the payoff is negative (for example, a
countersuit is filed and the plaintiffs lose). Sometimes law firms limit their earnings based
off of winnings- this creates the same payoff as a call bull spread if the contract is based off
of law firm winnings.

Returning to our example, a hedge fund putting in $100,000 into either case would
expect $1,000,000 to be their winnings (10x), with some adjustment needed due to time
value of money. In reality, their winnings would be $837,057.12 for Perry v. Progressive and
$1,301,124.14 for Henry v. Brown University.
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8 Exhibits

Exhibit 1- classaction.org/database options
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Exhibit 2- Database sample of winnings
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Exhibit 3- Webscraping code

import os

from selenium import webdriver

from selenium.webdriver.chrome.service import Service as ChromeService

from selenium.webdriver.common.by import By

from selenium.webdriver.support.ui import WebDriverWait

from selenium.webdriver.support import expected_conditions as EC

from selenium.webdriver.common.keys import Keys

from webdriver_manager.chrome import ChromeDriverManager

import pandas as pd

from bs4 import BeautifulSoup

import time

import pickle as pkl

download_directory = os.path.join(os.getcwd(), ’downloads’)

if not os.path.exists(download_directory):

os.makedirs(download_directory)

pickle_file = ’prev_suits.pkl’

if os.path.exists(pickle_file):

with open(pickle_file, ’rb’) as f:

prev_suits = pkl.load(f)

else:

prev_suits = {}

# Set up Selenium with the specified download directory

options = webdriver.ChromeOptions()

# options.add_argument(’--headless’) # Run in headless mode

prefs = {

’download.default_directory’: download_directory,

’download.prompt_for_download’: False,

’download.directory_upgrade’: True,

’safebrowsing.enabled’: True,

’plugins.always_open_pdf_externally’: True

}

options.add_experimental_option(’prefs’, prefs)

driver = webdriver.Chrome(service=ChromeService(ChromeDriverManager().install()),

options=options)

def download_pdf(states, laws, pdf_url):

state_list = ’+’.join(map(str, states))

c_download_directory = os.path.join(os.getcwd(), ’downloads’, state_list)

if not os.path.exists(c_download_directory):

os.makedirs(c_download_directory)

for law in laws:

c_download_directory = os.path.join(c_download_directory, law)
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if not os.path.exists(c_download_directory):

os.makedirs(c_download_directory)

c_options = webdriver.ChromeOptions()

c_options.add_argument(’--headless’) # Run in headless mode

c_prefs = {

’download.default_directory’: c_download_directory,

’download.prompt_for_download’: False,

’download.directory_upgrade’: True,

’safebrowsing.enabled’: True,

’plugins.always_open_pdf_externally’: True

}

c_options.add_experimental_option(’prefs’, c_prefs)

c_driver =

webdriver.Chrome(service=ChromeService(ChromeDriverManager().install()),

options=c_options)

try:

c_driver.get(pdf_url) # Navigate to the PDF URL

print(f’Download initiated for: {pdf_url}’)

pdf_name = pdf_url.split("/")[-1]

pdf_path = os.path.join(c_download_directory, pdf_name)

# Wait until the PDF file appears in the download directory

WebDriverWait(c_driver, 30).until(lambda d: os.path.exists(pdf_path))

print(f’Download completed for: {pdf_url}’)

except Exception as e:

print(f’Error occurred while downloading {pdf_url}: {e}’)

finally:

c_driver.quit()

def send_keys_one_by_one(element, text, delay=0.05):

"""Send keys one by one with a delay."""

for char in text:

element.send_keys(char)

time.sleep(delay)

def scrape_pdfs(state, law):

driver.get(’https://classaction.org/database’)

time.sleep(.1)

WebDriverWait(driver, 2).until(

EC.presence_of_element_located((By.TAG_NAME, ’body’))

)

state_input = WebDriverWait(driver, 2).until(

15



EC.visibility_of_element_located((By.CSS_SELECTOR, ’#ca-db-search-component

> div > div >

div.db.cf.relative.dtc-l.w-100.w-25-l.h-100.h2.white.ph3.br.b--black-05

> div:nth-child(2) > div > div > div > form > input’))

)

time.sleep(.4)

state_input.click()

time.sleep(.4)

state_input.clear()

time.sleep(.4)

send_keys_one_by_one(state_input, state)

time.sleep(.4)

state_input.send_keys(Keys.RETURN)

time.sleep(.4)

# Wait for the law input field to be present and visible

law_input = WebDriverWait(driver, 2).until(

EC.visibility_of_element_located((By.CSS_SELECTOR, ’#ca-db-search-component

> div > div >

div.db.cf.relative.dtc-l.w-100.w-25-l.h-100.h2.white.ph3.br.b--black-05

> div:nth-child(4) > div > div > div > form > input’))

)

# Click to focus on the law input field

time.sleep(.4)

law_input.click()

time.sleep(.4)

law_input.clear()

time.sleep(.4)

send_keys_one_by_one(law_input, law)

time.sleep(.4)

# Check for "No results" message

try:

no_results = WebDriverWait(driver, 2).until(

EC.presence_of_element_located((By.CSS_SELECTOR,

’.ais-RefinementList-noResults’))

)

print(f’No results for state: {state}, law: {law}. Moving to next state/law

combo.’)

return # Skip to the next law

except Exception:

# No "No results" message found, continue processing

# print(’pass’)

pass

time.sleep(.1)

law_input.send_keys(Keys.RETURN)

time.sleep(.3)

# print(’hits now’)

# Select the number of hits per page

try:

hits_per_page_select = WebDriverWait(driver, 10).until(
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EC.element_to_be_clickable((By.CSS_SELECTOR, ’.ais-HitsPerPage-select’))

)

hits_per_page_select.click() # Open the dropdown

time.sleep(.1)

# Wait for the specific option to be clickable

option = WebDriverWait(driver, 10).until(

EC.element_to_be_clickable((By.CSS_SELECTOR,

’.ais-HitsPerPage-option:nth-child(4)’))

)

option.click() # Click the option

# Wait for results to refresh after changing the selection

WebDriverWait(driver, 10).until(

EC.presence_of_element_located((By.CSS_SELECTOR,

’a.dib.br-pill.ba.b--near-white-blueish.no-underline’))

)

except Exception as e:

print(f’Error occurred while selecting hits per page: {e}’)

# Iterate through pages

while True:

# Wait for the results to appear

WebDriverWait(driver, 10).until(

EC.presence_of_element_located((By.CSS_SELECTOR,

’a.dib.br-pill.ba.b--near-white-blueish.no-underline’))

)

# Parse the page

soup = BeautifulSoup(driver.page_source, ’html.parser’)

# Select PDF links

pdf_links =

soup.select(’a.dib.br-pill.ba.b--near-white-blueish.no-underline’)

for link in pdf_links:

pdf_url = link[’href’]

if not pdf_url.lower().endswith(’.pdf’):

continue

if not pdf_url.startswith(’http’):

pdf_url = ’https://classaction.org’ + pdf_url

if pdf_url in prev_suits.keys():

if state not in prev_suits[pdf_url][’state’]:

prev_suits[pdf_url][’state’].append(state)

if law not in prev_suits[pdf_url][’law’]:

prev_suits[pdf_url][’law’].append(law)

else:

prev_suits[pdf_url]= {’state’:[state,], ’law’:[law,]}

# Check for the next page button

try:

next_page_button = WebDriverWait(driver, 10).until(
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EC.element_to_be_clickable((By.CSS_SELECTOR,

’#ca-db-search-component > div > div >

div.db.cf.relative.dtc-l.w-100.w-75-l.bg-near-white.v-top >

div.ais-Pagination.mb4 > ul >

li.ais-Pagination-item.ais-Pagination-item--nextPage > a’))

)

if ’disabled’ in next_page_button.get_attribute(’class’):

# print("No more pages to scrape.")

break # Exit the loop if the button is disabled

next_page_button.click() # Click the next page button

print(’next page’)

WebDriverWait(driver, 10).until(

EC.presence_of_element_located((By.CSS_SELECTOR,

’#ca-db-search-component > div > div >

div.db.cf.relative.dtc-l.w-100.w-75-l.bg-near-white.v-top >

div.ais-Pagination.mb4 > ul >

li.ais-Pagination-item.ais-Pagination-item--nextPage > a’))

)

except Exception as e:

# print("Error occurred while clicking next page:", e)

break # Exit the loop if there are no more pages

print(’current combo done’)

if __name__ == ’__main__’:

all_states = [’Alabama’, ’Alaska’, ’Arizona’, ’Arkansas’, ’California’,

’Colorado’, ’Connecticuit’, ’Delaware’, ’District of Columbia’, ’Florida’,

’Georgia’, ’Hawaii’, ’Idaho’, ’Illinois’, ’Indiana’, ’Iowa’, ’Kansas’,

’Kentucky’, ’Louisiana’, ’Maine’, ’Maryland’, ’Massachusetts’, ’Michigan’,

’Minnesota’, ’Mississippi’, ’Missouri’, ’Montana’, ’Nebraska’, ’Nevada’,

’New Hampshire’, ’New Jersey’, ’New Mexico’,’New York’,’North Carolina’,

’North Dakota’, ’Northern Mariana Islands’, ’Ohio’, ’Oklahoma’, ’Oregon’,

’Pennsylvania’, ’Puerto Rico’, ’Rhode Island’, ’South Carolina’, ’South

Dakota’, ’Tennessee’, ’Texas’, ’Utah’, ’Vermont’, ’Virgin Islands’,

’Virginia’, ’Washington’, ’West Virginia’, ’Wisconsin’, ’Wyoming’, ’zCourt

of Federal Claims’]

laws =

list(pd.read_csv(’Background_Scripts_and_Files/modified_laws.csv’)[’law_name’])

# states = [’Alabama’]

# laws = [’Telephone Consumer Protection Act’]

done_states = []

for i in prev_suits:

if prev_suits[i][’state’][0] not in done_states:

done_states.append(prev_suits[i][’state’][0])

done_states.sort()

skip_scraping = False

try:

last_state = done_states[-1]

if last_state == "zCourt of Federal Claims":

skip_scraping = True

index = all_states.index(last_state)

states = all_states[index + 1:] # Everything to the right

except:

states = all_states.copy()

if not skip_scraping:
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for state in states:

for law in laws:

scrape_pdfs(state, law)

# Specify the filename for the pickle file

filename = ’prev_suits.pkl’

# Save the dictionary to a pickle file

with open(filename, ’wb’) as file:

pkl.dump(prev_suits, file)

for i in prev_suits.keys():

print(i, prev_suits[i])

download_pdf(prev_suits[i][’state’], prev_suits[i][’law’], i)

driver.quit()

print(’fully done’)
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Exhibit 4- 0create results dict.ipynb

import pickle as pkl

from rapidfuzz import fuzz, process

import pandas as pd

# results_dict has format pdf_name:gain/loss

try:

with open(’results_dict.pkl’, ’rb’) as f:

results_dict = pkl.load(f)

except:

results_dict = {}

with open(’Download_PDFs_py_files/prev_suits.pkl’, ’rb’) as f:

prev_suits = pkl.load(f)

# Function to extract plaintiff and defendant from the URL

def extract_plaintiff_and_defendant(url):

# Extract the part before the ’.pdf’ extension

case_name = url.split(’/’)[-1].replace(’.pdf’, ’’)

# Split the case name by ’-v-’ to separate plaintiff and defendant

if ’-v-’ in case_name:

parts = case_name.split(’-v-’, 1) # Split only once

plaintiff = parts[0].strip()

defendant = parts[1].strip() if len(parts) > 1 else ""

plaintiff = plaintiff.replace("-", " ")

defendant = defendant.replace("-", " ")

# print(plaintiff)

return plaintiff.strip(), defendant.strip()

else:

return None, None

prev_suits_list = []

for k in prev_suits.keys():

prev_suits_list.append(extract_plaintiff_and_defendant(k))

def search_for_lawsuit(plaintiff, defendant, threshold = 80):

case_and_score = []

for case in prev_suits_list:

plaintiff_score = fuzz.ratio(plaintiff, case[0])

defendant_score = fuzz.ratio(defendant, case[1])

avg_score = (plaintiff_score + defendant_score) / 2 # Combine scores

case_and_score.append((case, plaintiff_score, defendant_score, avg_score))

# Filter by threshold

filtered = [r for r in case_and_score if r[3] >= 40]

filtered = [r for r in filtered if r[2] >= 40]

filtered = [r for r in filtered if r[1] >= 40]

# print(plaintiff, defendant, sorted(filtered, key=lambda x: x[3],

reverse=True))

return sorted(filtered, key=lambda x: x[3], reverse=True)

cases = [

’Checchia v. Bank of America, N.A.’, # Downloaded separately

’Gott v. Mylan et al’,

"Figueroa v. Capital One",

"Hardy v. Transamerica Life Insurance Company",
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"Hernandez v. Wells Fargo Bank, NA", # 5

"Stewart v. Early Warning Services, LLC.",

"Walters v. Target",

"Rivera v. Wells Fargo",

"Unknown v. AAB Optical Group et al.",

"Dasher v. RBC Bank", # 10

"Owens, et al. v. Bank of America, N.A.",

"Gary and Anne Childress, et al. v. JP Morgan Chase & Co., et al.",

"Perry et al. v. Progressive Michigan Insurance Company, et al.",

"Henry, et al. v. Brown University, et al.",

"Salls et al. v. Digital Federal Credit Union",# 15

"Stevens et al. v. Zappos.com",

]

for case in cases:

# case = ’Checchia v. Bank of America, N.A.’

plaintiff, defendant = case.split(’ v. ’, 1)

a = search_for_lawsuit(plaintiff, defendant)

case_keys = [

"checchia-v-bank-of-america-na.pdf",

"",

"figueroa-v-capital-one-na-et-al.pdf",

"hardy-v-transamerica-life-insurance-company.pdf",

"hernandez-v-wells-fargo-bank-na.pdf", # 5

"stewart-v-early-warning-services-llc.pdf",

"walters-v-target.pdf",

"rivera-v-wells-fargo-bank.pdf",

"disposable-contact-lens-antitrust-class-action.pdf",

"dasher-v-rbc-bank.pdf", # 10

"owens-et-al-v-bank-of-america-na-et-al.pdf",

"childress-et-al-v-jp-morgan-chase-and-co-et-al.pdf",

"perry-et-al-v-progressive-michigan-insurance-company-et-al.pdf",

"henry-et-al-v-brown-university-et-al.pdf",

"salls-et-al-v-digital-federal-credit-union.pdf", # 15

"stevens-et-al-v-zappos-com.pdf",

]

unk = 1/3

case_results = [

(8000000, 1/3, -1),

(264000000+345000000, 1/3, -1),

(13000000, unk, -1),

(88000000, unk, -1),

(18500000, 4525000, 335000), # 5

(4000000, unk, -1),

(5000000, 2110900.28, -1),

(3800000, unk, -1),

(118000000, 1/3, 1710000),

(7500000, .35, -1), # 10

(4950000, 1650000, 18829.07),

(62461938, .3, -1),

(61000000, 15000000, 460000),

(284000000, 1/3, -1),

(1800000, unk, -1), # 15

(0, 1600000, 1600000),

]

i = 0

for case in cases:
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# print(’c’, case)

plaintiff, defendant = case.split(’ v. ’, 1)

# print(’d’, defendant)

rez_list = search_for_lawsuit(plaintiff, defendant)

if len(case_keys[i]) > 0:

# print(case_keys[i])

results_dict[case_keys[i]] = (defendant, case_results[i][0],

case_results[i][1], case_results[i][2])

else:

# print(’finding’)

new_key_tup = rez_list[0][0]

# print(’nkt’, new_key_tup)

new_key = new_key_tup[0] + ’ v ’ + new_key_tup[1] + ’.pdf’

new_key = new_key.replace(’ ’, ’-’)

# print(’nk’, new_key)

results_dict[new_key] = (defendant, case_results[i][0], case_results[i][1],

case_results[i][2])

i += 1

# print()

with open(’results_dict.pkl’, ’wb’) as f:

pkl.dump(results_dict, f)
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Exhibit 5- 1read pdf.py

import os

from tika import parser

import pickle as pkl

class ScrapingDataToTxt:

def __init__(self, base_directory, results_dict, output_directory):

self.base_directory = os.path.abspath(base_directory)

self.results_dict = results_dict

self.output_directory = os.path.abspath(output_directory)

# Ensure the output directory exists

os.makedirs(self.output_directory, exist_ok=True)

print(f"Processing directory: {self.base_directory}")

print(f"Text files will be saved to: {self.output_directory}")

def update_results_dict(self):

updated_results_dict = {}

# Stack for DFS-like traversal

stack = [(self.base_directory, [])] # Each element is a tuple (directory,

subdirectories list)

while stack:

current_dir, subdirectories = stack.pop()

for file in os.listdir(current_dir):

file_path = os.path.join(current_dir, file)

if os.path.isdir(file_path):

# Add subdirectory to the stack and continue

stack.append((file_path, subdirectories + [file]))

elif file.lower().endswith(".pdf") and file.lower() in

self.results_dict:

# Get the old tuple (Bank name, amount, etc.) and add state and

subdirectory list

old_value = self.results_dict[file.lower()]

try:

updated_results_dict[file.lower()] = old_value +

(subdirectories[0], subdirectories[1:])

except:

try:

updated_results_dict[file.lower()] = old_value +

(subdirectories[0], [])

except:

updated_results_dict[file.lower()] = old_value + (’’, [])

return updated_results_dict

def pdfToTxt(self):

count = 0

# Walk through all directories and subdirectories

for root, _, files in os.walk(self.base_directory):

for file in files:

# Check if the file is a PDF and exists in the updated results_dict
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if file.lower().endswith(".pdf") and file.lower() in

self.results_dict:

# print()

# print(file)

# Get the relative path of the file to preserve the directory

structure

relative_path = os.path.relpath(root, self.base_directory)

# print(f"Relative Path: {relative_path}")

# Construct the output path based on the relative path

# output_dir = os.path.join(self.output_directory, relative_path)

# os.makedirs(output_dir, exist_ok=True)

# Define the output text file path

txt_filename = f"{file.lower().replace(’.pdf’, ’.txt’)}"

# txt_path = os.path.join(output_dir, txt_filename) # Ensure

unique output path

txt_path = os.path.join(self.output_directory, txt_filename) #

Ensure unique output path

try:

print(f"Processing file: {file}...")

pdfFilePath = os.path.join(root, file)

# Parse PDF content

data = parser.from_file(pdfFilePath)

content = data.get(’content’, ’’).strip()

if content:

# Clean up and format content

formatted_content = " ".join(content.split())

# Write to the corresponding .txt file

with open(txt_path, "w", encoding=’utf-8’) as f: # Open

with ’w’ to write fresh content

f.write(f"{formatted_content}\n")

count += 1

else:

print(f"No content found in {file}. Skipping...")

except Exception as e:

print(f"Error processing {file}: {e}")

print(f"Processed {count} files.")

if __name__ == ’__main__’:

# Load the results_dict from the pickle file

with open(’results_dict.pkl’, ’rb’) as f:

results_dict = pkl.load(f)

for k, v in results_dict.items():

print(k, v)

print()

# Initialize the class and update the results_dict

prepData = ScrapingDataToTxt(r"./downloads", results_dict, r"./lawcases")

results_dict = prepData.update_results_dict()
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# Save the updated results_dict back to a pickle file (optional)

with open(’results_dict.pkl’, ’wb’) as f:

pkl.dump(results_dict, f)

# Run the processing function

prepData.pdfToTxt()

print()

for k, v in results_dict.items():

print(k, v)

# import os

# from tika import parser

# import pickle as pkl

# class ScrapingDataToTxt:

# def __init__(self, base_directory, results_dict, output_directory):

# self.base_directory = os.path.abspath(base_directory)

# self.results_dict = results_dict

# self.output_directory = os.path.abspath(output_directory)

# # Ensure the output directory exists

# os.makedirs(self.output_directory, exist_ok=True)

# print(f"Processing directory: {self.base_directory}")

# print(f"Text files will be saved to: {self.output_directory}")

# def pdfToTxt(self):

# count = 0

# # Walk through all directories and subdirectories

# for root, _, files in os.walk(self.base_directory):

# for key in self.results_dict:

# # Check if the key is part of the filename (case insensitive)

# for file in files:

# if file.lower().endswith(".pdf") and key in file.lower():

# pdfFilePath = os.path.join(root, file)

# txt_filename = f"{key}.txt"

# txt_path = os.path.join(self.output_directory, txt_filename)

# try:

# print(f"Processing file: {file}...")

# # Parse PDF content

# data = parser.from_file(pdfFilePath)

# content = data.get(’content’, ’’).strip()

# if content:

# # Clean up and format content

# formatted_content = " ".join(content.split())

# # Write to the corresponding .txt file
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# with open(txt_path, "a", encoding=’utf-8’) as f:

# f.write(f"{formatted_content}\n")

# count += 1

# else:

# print(f"No content found in {file}. Skipping...")

# except Exception as e:

# print(f"Error processing {file}: {e}")

# print(f"Processed {count} files.")

# if __name__ == ’__main__’:

# # Load the results_dict from the pickle file

# with open(’results_dict.pkl’, ’rb’) as f:

# results_dict = pkl.load(f)

# # Initialize the class and run the processing function

# prepData = ScrapingDataToTxt(r"./downloads", results_dict, r"./lawcases")

# prepData.pdfToTxt()

# import os

# from tika import parser

# import pickle as pkl

# class ScrapingDataToTxt:

# def __init__(self, directory):

# self.directory = os.path.abspath(directory)

# print(f"Processing directory: {self.directory}")

# def pdfToTxt(self):

# print("Looping through files...")

# count = 0

# for file in os.listdir(self.directory):

# if file.lower().endswith(".pdf"):

# print(f"Opening file {file}...")

# pdfFilePath = os.path.join(self.directory, file)

# print("Parsing...")

# data = parser.from_file(pdfFilePath)

# Data = data.get(’content’, ’’)

# if not Data:

# print(f"No content found in {file}. Skipping...")

# continue

# try:

# print("Writing to txt file...")

# strippedData = Data.strip()

# formatData = " ".join(strippedData.split())

# txt_filename = f"{file[:-4]}.txt"
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# txt_path = os.path.join(self.directory, txt_filename)

# with open(txt_path, "a", encoding=’utf-8’) as f:

# f.write(f"{formatData}\n")

# count += 1

# except Exception as e:

# print(f"Error processing {file}: {e}")

# continue

# print(f"Processed {count} files.")

# if __name__ == ’__main__’:

# with open(’results_dict.pkl’, ’rb’) as f:

# results_dict = pkl.load(f)

# prepData = ScrapingDataToTxt(r"./lawcases")

# prepData.pdfToTxt()
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Exhibit 6- 2legal case classifier 1.0.py

import os

import re

import csv

import torch

from transformers import pipeline

Q1 = "This is a legal case. What is the company’s product or service involved in

this legal case?"

Q2 = ["product", "service"]

Q3 = ["core part of the company", "accessory part of the company"]

# THANK YOU GIOVANNI

def initialize_pipelines():

# Check if CUDA (GPU) is available

if torch.cuda.is_available():

device = 0 # GPU device index (0 is the first GPU)

print("GPU detected. Using GPU for inference.")

else:

device = -1 # CPU

print("GPU not detected. Using CPU for inference.")

# Initialize zero-shot classification pipeline

classifier = pipeline(

"zero-shot-classification",

model="facebook/bart-large-mnli",

device=device

)

# Initialize question-answering pipeline

qa_pipeline = pipeline(

"question-answering",

model="deepset/roberta-base-squad2", # More performant model

tokenizer="deepset/roberta-base-squad2",

device=device

)

return classifier, qa_pipeline

def read_case_text(file_path):

if not os.path.exists(file_path):

print(f"Error: The file ’{file_path}’ does not exist.")

return ""

with open(file_path, ’r’, encoding=’utf-8’) as file:

content = file.read()

if not content.strip():

print(f"Error: The file ’{file_path}’ is empty.")

return ""

# Find the index after "INTRODUCTION"

introduction_pattern = re.compile(r’\bINTRODUCTION\b’, re.IGNORECASE)

match = introduction_pattern.search(content)
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if match:

# Extract text after "INTRODUCTION"

start_index = match.end()

content_after_intro = content[start_index:].strip()

return content_after_intro

else:

print("Warning: ’INTRODUCTION’ section not found. Using the entire text.")

return content.strip()

def extract_product_service(text, qa_pipeline):

# First attempt: Use QA pipeline with a specific question

question = Q1

try:

result = qa_pipeline(question=question, context=text)

answer = result.get(’answer’, ’’).strip()

if answer and answer.lower() != "not identified":

print(f"QA Extraction: {answer}")

return answer

except Exception as e:

print(f"Error during QA extraction: {e}")

return "Not identified"

def classify_item(text, classifier, labels):

"""

Classifies a specific item (product or service) using zero-shot classification.

Args:

text (str): Text related to the item to classify.

classifier: Zero-shot classification pipeline.

labels (list): List of candidate labels for classification.

Returns:

tuple: Top label and its corresponding score.

"""

result = classifier(text, labels, multi_label=False)

top_label = result[’labels’][0]

top_score = result[’scores’][0]

return top_label, top_score

def display_classification_results(classifications):

print("\n--- Classification Results ---")

# Identified Product/Service

print("1. Identified Product/Service:")

print(f"\t- {classifications[’identified_item’]}")

# Classification for Product or Service

print("2. Is the case related to a product or a service?")

for label, score in zip(classifications[’product_or_service’][’labels’],

classifications[’product_or_service’][’scores’]):

print(f"\t- {label.capitalize()}: {score*100:.2f}%")

# Classification for Core or Accessory

print("3. Is this product/service a core or accessory part of the company?")

for label, score in zip(classifications[’role_in_company’][’labels’],

classifications[’role_in_company’][’scores’]):
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print(f"\t- {label.capitalize()}: {score*100:.2f}%")

print()

def save_results_to_csv(classifications, output_file="classification_results.csv"):

output_dir = ’./csv_classification_output’

if not os.path.exists(output_dir):

os.makedirs(output_dir)

file_exists = os.path.exists(f’{output_dir}/{output_file}’)

row = [

classifications[’case name’]+’.pdf’,

classifications[’identified_item’], # reason (identified product/service)

f"{classifications[’product_or_service’][’scores’][0]*100:.2f}%", # product

score

f"{classifications[’product_or_service’][’scores’][1]*100:.2f}%", # service

score

f"{classifications[’role_in_company’][’scores’][0]*100:.2f}%", # core part

score

f"{classifications[’role_in_company’][’scores’][1]*100:.2f}%" # accessory

part score

]

with open(f’{output_dir}/{output_file}’, mode=’a’, newline=’’,

encoding=’utf-8’) as csv_file:

writer = csv.writer(csv_file)

if not file_exists:

writer.writerow([’case name’,’reason’, ’product %’, ’service %’, ’core

part of the company’, ’accessory part of the company’])

writer.writerow(row)

print(f"Results saved to {output_file}")

import os

def main():

restart_classification_result = True

output_file = "csv_classification_output/classification_results.csv"

if os.path.exists(output_file) and restart_classification_result:

os.remove(output_file)

print(f"{output_file} has been deleted.")

else:

print(f"{output_file} does not exist or False.")

classifier, qa_pipeline = initialize_pipelines()

# Dynamically get all file paths in the ./lawcases directory

directory = "./lawcases"
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file_paths = [os.path.join(directory, file) for file in os.listdir(directory)

if file.endswith(".txt")]

# Loop through each file path

for file_path in file_paths:

print(f"\nProcessing file: {file_path}")

# Read the case text after "INTRODUCTION"

input_text = read_case_text(file_path)

if not input_text:

print(f"Skipping file: {file_path} (No valid content found)")

continue

# Extract the identified product/service

identified_item = extract_product_service(input_text, qa_pipeline)

ajmnd = os.path.splitext(os.path.basename(file_path))[0]

# Prepare the classifications dictionary

classifications = {

"case name": ajmnd,

"identified_item": identified_item,

"product_or_service": {},

"role_in_company": {}

}

if identified_item.lower() != "not identified":

# Classification 2: Is it a product or a service?

labels_q2 = Q2

label2, score2 = classify_item(identified_item, classifier, labels_q2)

classifications["product_or_service"] = {

"labels": [label2, "service" if label2 == "product" else "product"],

"scores": [score2, 1 - score2]

}

# Classification 3: Is it a core or accessory part of the company?

labels_q3 = Q3

label3, score3 = classify_item(identified_item, classifier, labels_q3)

classifications["role_in_company"] = {

"labels": [label3, "accessory part of the company" if label3 ==

"core part of the company" else "core part of the company"],

"scores": [score3, 1 - score3]

}

else:

# If no product/service identified, assign neutral scores

classifications["product_or_service"] = {

"labels": Q2,

"scores": [-1.0, -1.0]

}

classifications["role_in_company"] = {

"labels": Q3,

"scores": [-1.0, -1.0]

}

display_classification_results(classifications)
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save_results_to_csv(classifications,

output_file="classification_results.csv")

if __name__ == "__main__":

main()

# def main():

# # Initialize pipelines

# classifier, qa_pipeline = initialize_pipelines()

# # Define a list of file paths to process

# file_paths = [

# "./lawcases/law_case_1.txt",

# "./lawcases/law_case_2.txt", # Add more file paths as needed

# "./lawcases/law_case_3.txt",

# # ...

# ]

# # Loop through each file path

# for file_path in file_paths:

# print(f"\nProcessing file: {file_path}")

# # Read the case text after "INTRODUCTION"

# input_text = read_case_text(file_path)

# if not input_text:

# print(f"Skipping file: {file_path} (No valid content found)")

# continue

# # Extract the identified product/service

# identified_item = extract_product_service(input_text, qa_pipeline)

# ajmnd = os.path.splitext(os.path.basename(file_path))[0]

# # print(ajmnd)

# # Prepare the classifications dictionary

# classifications = {

# "case name":ajmnd,

# "identified_item": identified_item,

# "product_or_service": {},

# "role_in_company": {}

# }

# if identified_item.lower() != "not identified":

# # Classification 2: Is it a product or a service?

# labels_q2 = Q2

# label2, score2 = classify_item(identified_item, classifier, labels_q2)

# classifications["product_or_service"] = {

# "labels": [label2, "service" if label2 == "product" else

"product"],

# "scores": [score2, 1 - score2]

# }

# # Classification 3: Is it a core or accessory part of the company?
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# labels_q3 = Q3

# label3, score3 = classify_item(identified_item, classifier, labels_q3)

# classifications["role_in_company"] = {

# "labels": [label3, "accessory part of the company" if label3 ==

"core part of the company" else "core part of the company"],

# "scores": [score3, 1 - score3]

# }

# else:

# # If no product/service identified, assign neutral scores

# classifications["product_or_service"] = {

# "labels": Q2,

# "scores": [-1.0, -1.0]

# }

# classifications["role_in_company"] = {

# "labels": Q3,

# "scores": [-1.0, -1.0]

# }

#

# # Display the classification results

# display_classification_results(classifications)

#

# # Save the results to the CSV file with a fixed name

"classification_results.csv"

# save_results_to_csv(classifications,

output_file="classification_results.csv")

#

# if __name__ == "__main__":

# main()
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Exhibit 7- 2processor 2.0.py

import os

import re

import nltk

import pickle

from nltk.corpus import wordnet

from nltk.tokenize import sent_tokenize

nltk.download(’punkt’)

nltk.download(’wordnet’)

nltk.download(’omw-1.4’)

nltk.download(’stopwords’)

class TextFileProcessor:

def __init__(self, directory, keys_file, output_dir, agency_terms_file,

magazines_file):

self.directory = os.path.abspath(directory)

self.keys_file = keys_file

self.output_dir = os.path.abspath(output_dir)

self.agency_terms_file = agency_terms_file

self.magazines_file = magazines_file

self.signals = {}

self.create_output_directory()

self.product_synonyms = set()

self.service_synonyms = set()

self.agency_terms = set()

self.magazines = set()

self.load_agency_terms()

self.load_magazine_terms()

def create_output_directory(self):

if not os.path.exists(self.output_dir):

os.makedirs(self.output_dir)

print(f"Created output directory at {self.output_dir}")

else:

print(f"Output directory already exists at {self.output_dir}")

def load_keys_and_synonyms(self):

print("Loading keywords and their synonyms...")

try:

with open(self.keys_file, ’r’, encoding=’utf-8’) as f:

lines = [line.strip() for line in f if line.strip()]

except FileNotFoundError:

print(f"Keywords file not found: {self.keys_file}")

return

keywords = set()

for line in lines:

split_keywords = [word.strip().lower() for word in line.split(’,’) if

word.strip()]

keywords.update(split_keywords)
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self.keys_with_synonyms = set()

for key in keywords:

self.keys_with_synonyms.add(key)

# Add synonyms from WordNet

for syn in wordnet.synsets(key):

for lemma in syn.lemmas():

synonym = lemma.name().lower().replace(’_’, ’ ’)

self.keys_with_synonyms.add(synonym)

print(f"Total keywords and synonyms loaded: {len(self.keys_with_synonyms)}")

def get_synonyms(self, word):

synonyms = set()

for syn in wordnet.synsets(word):

for lemma in syn.lemmas():

synonym = lemma.name().lower().replace(’_’, ’ ’)

synonyms.add(synonym)

return synonyms

def load_product_service_synonyms(self):

print("Loading synonyms for ’product’ and ’service’...")

self.product_synonyms = self.get_synonyms(’product’)

self.service_synonyms = self.get_synonyms(’service’)

print(f"Product synonyms loaded: {len(self.product_synonyms)}")

print(f"Service synonyms loaded: {len(self.service_synonyms)}")

def load_agency_terms(self):

print("Loading agency terms from file...")

try:

with open(self.agency_terms_file, ’r’, encoding=’utf-8’) as f:

for line in f:

term = line.strip().lower()

if term:

self.agency_terms.add(term)

print(f"Total agency terms loaded: {len(self.agency_terms)}")

except FileNotFoundError:

print(f"Agency terms file not found: {self.agency_terms_file}")

def load_magazine_terms(self):

print("Loading magazine terms from file...")

try:

with open(self.magazines_file, ’r’, encoding=’utf-8’) as f:

for line in f:

magazine = line.strip().lower()

if magazine:

self.magazines.add(magazine)

print(f"Total magazines loaded: {len(self.magazines)}")

except FileNotFoundError:

print(f"Magazines file not found: {self.magazines_file}")

def find_prices(self, text):

# Enhanced regex to capture various price formats

price_patterns = [

r’(?: |\$| )\s?\d{1,3}(?:,\d{3})*(?:\.\d{2})?’,

r’\d{1,3}(?:,\d{3})*\s?(?:|\$| )’,

r’\$\d+’
]
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prices = []

for pattern in price_patterns:

matches = re.findall(pattern, text)

prices.extend(matches)

return prices

def find_percentages(self, text):

# Regex to find percentages

percentage_pattern = r’\b\d+(?:\.\d+)?\s?%\b’

percentages = re.findall(percentage_pattern, text)

return percentages

def find_keys(self, sentence):

found_keys = set()

sentence_lower = sentence.lower()

for key in self.keys_with_synonyms:

# Use word boundaries to ensure whole word matching

if re.search(r’\b’ + re.escape(key) + r’\b’, sentence_lower):

found_keys.add(key)

return found_keys

def find_synonyms(self, sentence, synonyms_set):

found_synonyms = []

sentence_lower = sentence.lower()

for synonym in synonyms_set:

# Use word boundaries to ensure whole word matching

matches = re.findall(r’\b’ + re.escape(synonym) + r’\b’, sentence_lower)

if matches:

found_synonyms.extend(matches)

return found_synonyms

def find_phrase(self, text, phrase):

return phrase.lower() in text.lower()

def find_agency_terms(self, text):

found_agencies = []

text_lower = text.lower()

for term in self.agency_terms:

# Use word boundaries to ensure whole word matching

matches = re.findall(r’\b’ + re.escape(term) + r’\b’, text_lower)

if matches:

found_agencies.extend(matches)

return found_agencies

def find_magazines(self, text):

found_magazines = []

text_lower = text.lower()

for magazine in self.magazines:

# Use word boundaries to ensure whole word matching

matches = re.findall(r’\b’ + re.escape(magazine) + r’\b’, text_lower)

if matches:

found_magazines.extend(matches)

return found_magazines

def process_files(self):

self.load_keys_and_synonyms()

self.load_product_service_synonyms()
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print("Starting text file processing...")

for filename in os.listdir(self.directory):

if filename.lower().endswith(".txt"):

file_path = os.path.join(self.directory, filename)

print(f"Processing file: {filename}...")

try:

with open(file_path, ’r’, encoding=’utf-8’) as f:

text = f.read()

sentences = sent_tokenize(text)

signals_in_file = {

’prices’: [],

’price_sentences’: [],

’keys’: [],

’key_sentences’: [],

’percentages’: [],

’percentage_sentences’: [],

’product_synonyms’: {},

’service_synonyms’: {},

’delaware_corporation’: False,

’table_of_contents’: False,

’magazines’: {},

’agencies’: {}

}

# Check for specific phrases in the whole text

signals_in_file[’delaware_corporation’] = self.find_phrase(text,

’Delaware corporation’)

signals_in_file[’table_of_contents’] = self.find_phrase(text,

’Table of Contents’)

# Find agencies and magazines in the entire text

agencies_found = self.find_agency_terms(text)

for agency in agencies_found:

signals_in_file[’agencies’][agency] =

signals_in_file[’agencies’].get(agency, 0) + 1

magazines_found = self.find_magazines(text)

for magazine in magazines_found:

signals_in_file[’magazines’][magazine] =

signals_in_file[’magazines’].get(magazine, 0) + 1

for sentence in sentences:

# Check for prices

prices = self.find_prices(sentence)

if prices:

signals_in_file[’prices’].extend(prices)

signals_in_file[’price_sentences’].append(sentence.strip())

# Check for keywords/synonyms

keys = self.find_keys(sentence)

if keys:

signals_in_file[’keys’].extend(keys)

signals_in_file[’key_sentences’].append(sentence.strip())
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# Check for percentages

percentages = self.find_percentages(sentence)

if percentages:

signals_in_file[’percentages’].extend(percentages)

signals_in_file[’percentage_sentences’].append(sentence.strip())

# Check for product synonyms

product_syns_found = self.find_synonyms(sentence,

self.product_synonyms)

for syn in product_syns_found:

signals_in_file[’product_synonyms’][syn] =

signals_in_file[’product_synonyms’].get(syn, 0) + 1

# Check for service synonyms

service_syns_found = self.find_synonyms(sentence,

self.service_synonyms)

for syn in service_syns_found:

signals_in_file[’service_synonyms’][syn] =

signals_in_file[’service_synonyms’].get(syn, 0) + 1

signals_in_file[’keys’] = list(set(signals_in_file[’keys’]))

self.signals[filename] = signals_in_file

# Save signals in a text file

self.save_signals_to_txt(filename, signals_in_file)

except Exception as e:

print(f"Error processing {filename}: {e}")

continue

print(f"Processed {len(self.signals)} files.")

def save_signals_to_txt(self, filename, signals):

innerpricelist=[]

innerkeydict={}

innermags={}

inneragents={}

base_filename = os.path.splitext(filename)[0]

output_file = os.path.join(self.output_dir, f"{base_filename}_signals.txt")

try:

with open(output_file, ’w’, encoding=’utf-8’) as f:

f.write(f"Signals for file: {filename}\n\n")

innerfilename=os.path.splitext(filename)[0] + ".pdf"

# Write down prices

if signals[’prices’]:

f.write("Prices found:\n")

for price, sentence in zip(signals[’prices’],

signals[’price_sentences’]):

f.write(f"- {price} in sentence: \"{sentence}\"\n")

innerpricelist.append(float(price[1:].replace(’,’, ’’)))

else:

f.write("No prices found.\n")

innerpricelist.append(0)
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f.write("\n")

# Write down the keywords/synonyms

if signals[’keys’]:

f.write("Keywords/Synonyms found:\n")

for key, sentence in zip(signals[’keys’],

signals[’key_sentences’]):

f.write(f"- {key} in sentence: \"{sentence}\"\n")

innerkeydict[key]=1

else:

f.write("No keywords or synonyms found.\n")

innerkeydict[’NA’]=0

f.write("\n")

# Write down the percentages

if signals[’percentages’]:

f.write("Percentages found:\n")

for percentage, sentence in zip(signals[’percentages’],

signals[’percentage_sentences’]):

f.write(f"- {percentage} in sentence: \"{sentence}\"\n")

else:

f.write("No percentages found.\n")

f.write("\n")

# Write down product synonyms

if signals[’product_synonyms’]:

f.write("Product synonyms found:\n")

for synonym, count in signals[’product_synonyms’].items():

f.write(f"- {synonym}: {count} times\n")

else:

f.write("No product synonyms found.\n")

f.write("\n")

# Write down service synonyms

if signals[’service_synonyms’]:

f.write("Service synonyms found:\n")

for synonym, count in signals[’service_synonyms’].items():

f.write(f"- {synonym}: {count} times\n")

else:

f.write("No service synonyms found.\n")

f.write("\n")

# Write down if "Delaware corporation" is found

if signals[’delaware_corporation’]:

f.write("\"Delaware corporation\" was found in the document.\n")

innercorporation=1

else:

f.write("\"Delaware corporation\" was not found in the

document.\n")

innercorporation=0

f.write("\n")

# Write down if "Table of Contents" is found
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if signals[’table_of_contents’]:

f.write("\"Table of Contents\" was found in the document.\n")

innertable=1

else:

f.write("\"Table of Contents\" was not found in the document.\n")

innertable=0

f.write("\n")

# Write down magazines found

if signals[’magazines’]:

f.write("Magazines/Reviews found:\n")

for magazine, count in signals[’magazines’].items():

f.write(f"- {magazine}: {count} times\n")

innermags[magazine]=count

else:

f.write("No magazines or reviews found.\n")

innermags[’NA’]=0

f.write("\n")

# Write down agencies found

if signals[’agencies’]:

f.write("Federal agencies or terms found:\n")

for agency, count in signals[’agencies’].items():

f.write(f"- {agency}: {count} times\n")

inneragents[agency]=count

else:

f.write("No federal agencies or terms found.\n")

inneragents[’NA’]=0

# write for new dict

entry3_results_dict[innerfilename]=[innerpricelist,innerkeydict,innercorporation,innertable,innermags,inneragents]

except Exception as e:

print(f"Error writing signals to {output_file}: {e}")

def report_signals(self):

report = "\nSignals found in files:"

for filename, signals in self.signals.items():

report += f"\n\nFile: {filename}"

# Report Prices

if signals[’prices’]:

report += "\n Prices found:"

for price, sentence in zip(signals[’prices’],

signals[’price_sentences’]):

continue#report += f"\n\t- {price} in sentence: \"{sentence}\""

else:

report += "\n\tNo prices found."

# Report Keywords

if signals[’keys’]:

report += "\n Keywords/Synonyms found:"

for key, sentence in zip(signals[’keys’], signals[’key_sentences’]):

continue#report += f"\n\t- {key} in sentence: \"{sentence}\""

else:
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report += "\n\tNo keywords or synonyms found."

# Report Percentages

if signals[’percentages’]:

report += "\n Percentages found:"

for percentage, sentence in zip(signals[’percentages’],

signals[’percentage_sentences’]):

continue#report += f"\n\t- {percentage} in sentence:

\"{sentence}\""

else:

report += "\n\tNo percentages found."

# Report Product Synonyms

if signals[’product_synonyms’]:

report += "\n Product synonyms found:"

for synonym, count in signals[’product_synonyms’].items():

report += f"\n\t- {synonym}: {count} times"

else:

report += "\n\tNo product synonyms found."

# Report Service Synonyms

if signals[’service_synonyms’]:

report += "\n Service synonyms found:"

for synonym, count in signals[’service_synonyms’].items():

report += f"\n\t- {synonym}: {count} times"

else:

report += "\n\tNo service synonyms found."

# Report Delaware corporation

if signals[’delaware_corporation’]:

report += "\n \"Delaware corporation\" was found in the document."

else:

report += "\n \"Delaware corporation\" was not found in the

document."

# Report Table of Contents

if signals[’table_of_contents’]:

report += "\n \"Table of Contents\" was found in the document."

else:

report += "\n \"Table of Contents\" was not found in the document."

# Report Magazines

if signals[’magazines’]:

report += "\n Magazines/Reviews found:"

for magazine, count in signals[’magazines’].items():

report += f"\n\t- {magazine}: {count} times"

else:

report += "\n\tNo magazines or reviews found."

# Report Agencies

if signals[’agencies’]:

report += "\n Federal agencies or terms found:"

for agency, count in signals[’agencies’].items():

report += f"\n\t- {agency}: {count} times"

else:

report += "\n\tNo federal agencies or terms found."
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# Print the report to the console

print(report)

# Save the final report to a text file

self.save_final_report(report)

def save_final_report(self, report):

output_file = os.path.join(self.output_dir, "~final_report.txt")

try:

with open(output_file, ’w’, encoding=’utf-8’) as f:

f.write(report)

print(f"\nFinal report saved to {output_file}")

except Exception as e:

print(f"Error writing final report to {output_file}: {e}")

def save_final_dict(self):

innerfile_name = "entry3_results_dict.pkl"

innerfile_path = os.path.join(’./’, innerfile_name)

try:

with open(innerfile_path, "wb") as pickle_file:

pickle.dump(entry3_results_dict, pickle_file)

print(f"\nFinal dict saved to {innerfile_path}")

except Exception as e:

print(f"Error writing final dict to {innerfile_path}: {e}")

if __name__ == ’__main__’:

global entry3_results_dict

entry3_results_dict={}

# Define the file paths

directory = r"./lawcases" # Directory containing the .txt files to

process

keys_file = r"./signals_input/keys_sentence.txt" # File containing the

keywords

agency_terms_file = r"./signals_input/agency_term.txt" # File containing

agency terms

magazines_file = r"./signals_input/magazines.txt" # File containing magazine

names

output_dir = r"./signals_output" # Directory where results will be saved

(will be created if it doesn’t exist)

# Create an instance of the processor

processor = TextFileProcessor(directory, keys_file, output_dir,

agency_terms_file, magazines_file)

# Process the files

processor.process_files()

# Generate and save the final report

processor.report_signals()

processor.save_final_dict()
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Exhibit 8- 3data processor.ipynb

import pandas as pd

import numpy as np

import pickle as pkl

# %run 0create_results_dict.ipynb

# Load the results_dict from the pickle file

with open(’results_dict.pkl’, ’rb’) as f:

results_dict = pkl.load(f)

# for k, v in results_dict.items():

# print(k, v)

### Entry 3

with open(’entry3_results_dict.pkl’, ’rb’) as f:

entries_3 = pkl.load(f)

dataset = pd.DataFrame([], columns = [

’Case’,

’Defendant’, ’AmountWon’, ’FirmAmountWon’, ’FirmExpenses’, ’state’,

’list_of_laws’,# from results_dict

’reason’, ’product’, ’service’, ’core part of the company’, ’accessory part of

the company’, # from csv

’AvgAmtPlaintiffCost’, ’keywords’, ’Delaware corporation’, ’Table of

Contents’, ’Magazines/Reviews’, ’Federal Agencies’,# from report

])

dataset.set_index(’Case’, inplace=True)

entries_2 = pd.read_csv(’csv_classification_output/classification_results.csv’,

index_col=’case name’)

case_list = results_dict.keys()

for case in case_list:

print(case)

entry1 = list(results_dict[case])

# entry2 = [’amogus’, 0, 0, 0, 0]

entry2 = entries_2.loc[case,:]

entry3 = entries_3[case] # case has structure: [0, 1, 2, 3, 4, 5], {’c’:9/11,

’d’:69}, 1, 0, {’c’:9/11, ’d’:69}, {’e’:.8181, ’f’:69}]

# entry3 = [[0, 1, 2, 3, 4, 5], {’amogus’:9/11, ’morbius’:69}, 1, 0,

{’c’:9/11, ’d’:69}, {’e’:.8181, ’f’:69}]

try:

a = entry3[0]

# print(entry3)

# print(a)

entry3[0] = sum(a)/len(a)

except:

a = 0

row = entry1.copy()

row.extend(entry2)

row.extend(entry3)

# print(’r’, row)

new_row = pd.DataFrame([row], index = [case], columns=dataset.columns)

# print(new_row)

dataset = pd.concat([dataset, new_row])
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dataset.loc[dataset[’FirmAmountWon’] < 1, ’FirmAmountWon’] =

(dataset[’FirmAmountWon’] * dataset[’AmountWon’])

dataset = dataset.replace(-1, np.nan)

percentage_columns = [’product’, ’service’, ’core part of the company’, ’accessory

part of the company’]

for col in percentage_columns:

dataset[col] = dataset[col].replace({’%’: ’’}, regex=True).astype(float) / 100

# 2

# 3

dataset[’AvgAmtPlaintiffCost’] = dataset[’AvgAmtPlaintiffCost’].apply(np.mean)

dataset

all_terms = set()

dataset[’list_of_laws’].apply(lambda x: all_terms.update(x))

for term in all_terms:

dataset[term] = dataset[’list_of_laws’].apply(lambda x: 1 if term in x else 0)

dataset.drop(columns=’list_of_laws’, inplace=True)

dataset_expanded = dataset[’keywords’].apply(pd.Series)

dataset = pd.concat([dataset.drop(columns=’keywords’), dataset_expanded], axis=1)

dataset_expanded = dataset[’Magazines/Reviews’].apply(pd.Series)

dataset = pd.concat([dataset.drop(columns=’Magazines/Reviews’), dataset_expanded],

axis=1)

dataset_expanded = dataset[’Federal Agencies’].apply(pd.Series)

dataset = pd.concat([dataset.drop(columns=’Federal Agencies’), dataset_expanded],

axis=1)

text_col = [’defendant’, ’reason’]

# numeric_col = ["AmountWon", "FirmAmountWon", "FirmExpenses", "product",

"service", "core part of the company", "accessory part of the company",

"AvgAmtPlaintiffCost", "Delaware corporation", "Table of Contents"]

dataset.iloc[:,4:] = dataset.iloc[:,4:].replace(np.nan, 0)

dataset.to_csv(’9dataset.csv’)
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Exhibit 9- 4neural net.ipynb

import pandas as pd

import numpy as np

from scipy.sparse import csr_matrix

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler, OneHotEncoder

from sklearn.compose import ColumnTransformer

from sklearn.pipeline import Pipeline

from sklearn.preprocessing import MinMaxScaler

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import layers

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Dropout

gpus = tf.config.list_physical_devices(’GPU’)

# if gpus:

# print(f"GPUs found: {gpus}")

# else:

# print("No GPUs found.")

for gpu in gpus:

tf.config.experimental.set_memory_growth(gpu, True)

dataset = pd.read_csv(’9dataset.csv’)

dataset.set_index(’Unnamed: 0’, inplace=True)

target_columns = [’AmountWon’, ’FirmAmountWon’, ’FirmExpenses’]

X = dataset.drop(target_columns, axis=1)

y = dataset[target_columns]

y.drop(’FirmExpenses’, inplace = True, axis=1) # Not enough data for the time being

text_columns = [’Defendant’, ’reason’, ’state’]

numerical_columns = [col for col in X.columns if col not in text_columns and col

!= ’index’]

preprocessor = ColumnTransformer(

transformers=[

(’num’, StandardScaler(), numerical_columns),

(’text’, OneHotEncoder(handle_unknown=’ignore’), text_columns)

])

pipeline = Pipeline(steps=[

(’preprocessor’, preprocessor)

])
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X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1,

random_state=r_s)

X_train_transformed = pipeline.fit_transform(X_train)

X_test_transformed = pipeline.transform(X_test)

X_train_transformed = csr_matrix(X_train_transformed).toarray()

X_test_transformed = csr_matrix(X_test_transformed).toarray()

scaler_y = MinMaxScaler()

y_train_normalized = scaler_y.fit_transform(y_train)

y_test_normalized = scaler_y.transform(y_test)

model = Sequential([

Dense(64, activation=’relu’, input_shape=(X_train_transformed.shape[1],)),

Dropout(0.2),

Dense(32, activation=’relu’),

Dense(y_train_normalized.shape[1], activation=’linear’)

])

model.compile(optimizer=’adam’, loss=’mse’, metrics=[’mae’])

history = model.fit(

X_train_transformed, y_train_normalized,

validation_data=(X_test_transformed, y_test_normalized),

epochs=50,

batch_size=4,

verbose=1

)

test_loss, test_mae = model.evaluate(X_test_transformed, y_test_normalized,

verbose=0)

print(f"Test Loss: {test_loss}, Test MAE: {test_mae}")

predictions_normalized = model.predict(X_test_transformed)

predictions = scaler_y.inverse_transform(predictions_normalized)

print(’done’)

from copy import deepcopy

comparison = deepcopy(y_test)

comparison[’AmtWonPred’] = predictions[:, 0]

comparison[’FirmAmtWonPred’] = predictions[:, 1]

for col in comparison.columns:

comparison.col = comparison[col].astype(int)

comparison[’Diff0’] = (comparison[’AmountWon’] -

comparison[’AmtWonPred’]).astype(int)

comparison[’Diff0%0’] =

(comparison[’Diff0’]/comparison[’AmtWonPred’]*100).astype(int)
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comparison[’Diff0%1’] =

(comparison[’Diff0’]/comparison[’AmountWon’]*100).astype(int)

comparison[’Diff1’] = (comparison[’FirmAmountWon’] -

comparison[’FirmAmtWonPred’]).astype(int)

comparison[’Diff1%0’] =

(comparison[’Diff1’]/comparison[’FirmAmountWon’]*100).astype(int)

comparison[’Diff1%1’] =

(comparison[’Diff1’]/comparison[’FirmAmtWonPred’]*100).astype(int)

new_column_order = [’AmountWon’, ’AmtWonPred’, ’Diff0’, ’Diff0%0’, ’Diff0%1’,

’FirmAmountWon’, ’FirmAmtWonPred’, ’Diff1’, ’Diff1%0’, ’Diff1%1’]

comparison = comparison[new_column_order]

comparison
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